일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 정렬
- 머신러닝 기초
- Natural Language Processing with PyTorch
- 머신러닝
- 알고리즘
- tensorflow
- 강의자료
- 백준
- 홍콩과기대김성훈교수
- DynamicProgramming
- DP
- 파이썬
- Python
- BAEKJOON
- classifier
- 파이토치
- Deep learning
- machine learning
- Hypothesis
- Cross entropy
- Softmax
- loss
- 스택
- pytorch
- MSE
- AI
- 강의정리
- rnn
- 자연어처리
- 딥러닝
- Today
- Total
목록MSE (3)
개발자의시작
이 글은 모두를위한딥러닝 시즌2 https://github.com/deeplearningzerotoall/PyTorch 을 정리한 글입니다. GitHub - deeplearningzerotoall/PyTorch: Deep Learning Zero to All - Pytorch Deep Learning Zero to All - Pytorch. Contribute to deeplearningzerotoall/PyTorch development by creating an account on GitHub. github.com Multivariate Linear regression - 여러 개의 정보로부터 하나의 추측 값을 계산하는 모델 복수의 정보를 가지고 어떻게 예측을 할 수 있을까? Data Hypothes..
글은 모두를위한딥러닝 시즌2 https://github.com/deeplearningzerotoall/PyTorch 을 정리한 글입니다. 이전 챕터보다 더 간단한 hypothesis를 사용한다. 이 데이터는 입력과 출력이 동일하므로 W = 1이 가장 좋은 값이 된다.( H(x) = x가 가장 정확한 모델 ) 여기서 모델의 좋고 나쁨을 어떻게 평가할 수 있을까? cost function은 모델의 예측 값이 실제 데이터와 얼마나 다른지를 나타내는 값으로, 잘 학습된 모델일수록 낮은 cost를 갖는다. 위 모델에서는 W=1 일 때, cost=0이며, W가 1에서 멀어질수록 cost가 높아진다. Linear Regression 에서 쓰이는 cost function은 Mean Squared Error이며 MSE라..
은 모두를위한딥러닝 시즌2 https://github.com/deeplearningzerotoall/PyTorch 을 정리한 글입니다. 이번 챕터에서 모델링하려는 것은 공부시간과 점수의 상관관계이다. 내가 4시간을 공부했다면 몇 점 정도를 받을 수 있을까? 를 예측하는 것이다. 모델의 학습을 위한 데이터는 "torch.tensor"의 형태이며, 입력과 출력을 각기 다른 텐서에 저장한다. 입력은 x_train, 출력은 y_train 로 표기한다. 1 2 3 4 5 6 7 import torch import numpy as np x_train = torch.FloatTensor([[1], [2], [3]]) y_train = torch.FloatTensor([[2], [4], [6]]) print(x_tra..